Surface Compression with Hierarchical Powell-Sabin B-splines

نویسندگان

  • Jan Maes
  • Adhemar Bultheel
چکیده

We show how to construct a stable hierarchical basis for piecewise quadratic C continuous splines defined on Powell–Sabin triangulations. We prove that this hierarchical basis is well suited for compressing surfaces. Our compression method does not require the construction of wavelets which are usually expensive to compute, but instead we construct a stable quasi-interpolation scheme for our spline space which achieves optimal approximation order. Numerical experiments demonstrate the high compression rate of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer aided geometric design with Powell-Sabin splines

Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...

متن کامل

On the Lp-stability of quasi-hierarchical Powell-Sabin B-splines

Quasi-hierarchical Powell-Sabin splines are C-continuous quadratic splines defined on a locally refined hierarchical triangulation. They admit a compact representation in a normalized B-spline basis. We prove that the quasi-hierarchical basis is in general weakly Lpstable, but for a broad class of hierarchical triangulations it is even strongly Lp-stable.

متن کامل

Quasi-hierarchical Powell-Sabin B-splines

Hierarchical Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The B-spline basis functions have a local support, they form a...

متن کامل

On the graphical display of Powell-Sabin splines: a comparison of three piecewise linear approximations

Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on arbitrary triangulations. They admit a compact representation in a normalized B-spline basis with a geometric interpretation involving control triangles. This paper discusses several piecewise linear approximations for the graphical display of PowellSabin splines. We analyse their approximation error to the spline ...

متن کامل

Isogeometric analysis with Powell-Sabin splines

This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJWMIP

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2006